If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+62x-240=0
a = 4; b = 62; c = -240;
Δ = b2-4ac
Δ = 622-4·4·(-240)
Δ = 7684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7684}=\sqrt{4*1921}=\sqrt{4}*\sqrt{1921}=2\sqrt{1921}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{1921}}{2*4}=\frac{-62-2\sqrt{1921}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{1921}}{2*4}=\frac{-62+2\sqrt{1921}}{8} $
| X2+12x+4=0 | | 9+3x=1x+5 | | 3=a2^2 | | 4x+12=2x+6+6 | | 4-(x-1)+4=6(x-2)-4-2x | | (25)^x=1/5 | | x(4)+12=19 | | x4+12=19 | | 2,4x-19,9=21,1-1,6x | | 0.018x+0.02x+0.03375x=35875 | | 2n+1=5n-6 | | 0=-4.9x^2-19.6x+0.50 | | 21x+30=51 | | 60+20x=35x | | 0.2x+1=1.6 | | x=-9+10=11 | | 3x-1=5- | | 2×-1=3y | | 5^y=32 | | 4x+22=1/2(20+10) | | -8m+13=-17m | | 0.09x+(x+2500)(0.05)=475 | | -5+3a=4a-3 | | w÷28+6.5=11 | | x2=-4500 | | x-1/8=5/6 | | 12+5b+6=10+9b | | 6y+2=4y-7 | | 0.2y-0.75=-1.3 | | 4x+2(x+2)=4(x-4)-10 | | 3a=12=12 | | 1/5y-3/4=-4/3 |